Multi-Scale Atmospheric Numerical Modeling for Planetary Applications

Mark I. Richardson

Caltech

AIRSP - Pl Meeting April 6, 2005

Purpose

- -single, common framework for local-toglobal modeling
- maximum grid flexibility
- nesting
- fast, parallel architecture
- clean separation of model physics / dynamics from software "architecture" minimal impact of platform changes
- model that can be "switched" from planet-to-planet with minimal impact

Project

- Modify existing NCAR Weather Research and Forecast (WRF) model (www.wrf-model.org)
- Change the grid discretization to allow for non-conformal (e.g. lat-lon) grids
- Implement polar boundary conditions to allow for global extent (basic WRF is limited area)
- Change "clocks and calendars" to allow for generalized orbits / planet spin rates
- Allow physical constants to be user-defined in a single location

Earth

Mars

Titan

 N_2 atmosphere $P_{surf} \sim 1 \times 10^5 \text{ Pa}$ $T_{surf} \sim 288 \text{ K}$

Water cycle
Oceans & land surfaces

 CO_2 atmosphere $P_{surf} \sim 610 \text{ Pa}$ $T_{surf} \sim 210 \text{ K}$

Very eccentric orbit
Major topography
Dust storms

 N_2 atmosphere $P_{surf} \sim 1.5 \times 10^5$ Pa $T_{surf} \sim 93$ K

Thick haze layers
Methane 'hydrology'
Slowly rotating

Storm onset & evolution: multiscale

feedbacks

Wind stress lifting: +ve feedbacks 1 - local scale

Wind stress lifting: +ve feedbacks 2 - global scale

The Weather Research and Forecasting (WRF) model

- Mesoscale (limited area) model for weather research and forecasting on Earth
- Developed by NCAR in collaboration with other agencies (NOAA, AFWA, etc.)
- *Aim*: to produce a reliable mesoscale model, to be used for real-time forecasting *and* as a research tool, with improvements being worked into new releases

Features of WRF

- Dynamics conserve mass 20354
 and angular momentum
 highly accurate
- Highly parallel code=> efficient
- Large suite of physics parameterizations and a modular form => flexible
- Uses Arakawa C-grid
 U = zonal (E-W) velocity point
 V = meridional (N-S) velocity point
 T = temperature / mass point

Features of WRF (cont.)

Nesting capability:

2-way nesting capability:

2-way nesting

The usual approach - how mesoscale WRF

a) place nests within a mesoscale model (WRF), with

WRF

b) its initial and boundary conditions being provided by a *separate*

globa Jodei

Separate global model

Drawbacks:

- Interface between global and mesoscale models is one-way => no feedbacks from small to larger scale
- 2. Unless specially designed to match, often have different dynamics and/or physics *inconsistent*
- Interface is also 'messy', e.g., must view output from the two models using different tools

Globalising WRF gives a highly accurate & efficient global model, in which we can place 1- & 2-way

nests

So we are basically using WRF's nesting abilities to nest all the way down from global

Changes required for global WRF

Allow use of a latitude-longitude grid

WRF is set up for *conformal* rectangular grids (such as polar stereograhic) where the map to real world scaling factor is the same in the x as in the y direction

We still need a

rectangular grid, but one
which will reach from the
south to the north pole
=> lat-lon grid

If dx = gap between grid points in map coordinates, and dX = actual distance (in meters), then $dX = (1/m_x) dx$ and likewise $dY = (1/m_v) dy$

Original WRF

Conformal grid
=> for all map projections
available (mercator, polar
stereographic, etc.),

m_x = m_v at all points

=> Only one map scale factor (m) used, and omitted altogether when m_x and m_y cancelled

Global WRF

Lat-lon grid \Rightarrow $x = a\lambda$, $y = a\phi$, \Rightarrow $dx = a d\lambda$, $dy = a d\phi$, whereas $dX = a \cos\phi d\lambda$, $dY = a d\phi$ \Rightarrow $m_x = dx/dX = \sec\phi$, $m_y = dy/dY = 1$ \Rightarrow $m_x \neq m_y$

=> Needed to identify which map scale factor was required in all equations where 'm' appeared, and reintroduce map scale factors where they previously cancelled (so were omitted)

Changes required for global WRF

Deal with polar boundary conditions

Place v points at poles, with v there = 0

Nothing is allowed to pass directly over the poles - atmospheric mass is pushed around the pole in longitude instead - and no fluxes can come from the polar points when calculating variables

Deal with instabilities at the model top

The basic *mesoscale* WRF model generally only reached a maximum of ~30km, plus was regularly (and frequently) forced by a separate GCM

However, 'standalone' *global* WRF will develop upper level instabilities due to spurious wave reflection at the model top if these are not damped in some way - we must therefore introduce a 'sponge layer'

Changes required for global WRF

 Avoid instabilities due to E-W distance between grid points becoming small near poles

This is a problem due to the CFL (Courant Friedrichs Lewy) criterion:

 $\Delta t \leq \Delta x / U$ where U is the fastest moving wave in the problem

- \Rightarrow As $\Delta x \Rightarrow 0$, Δt must $\Rightarrow 0$ also, which is very expensive
- => a) Use a small Δ t (far less than needed to satisfy at the equator), OR
 - b) Increase largest effective scale Δ x by filtering out smaller wavelengths (e.g. retaining only wavenumber 1 at the pole itself)

Usual method in GCMs is to use a polar Fourier filter

Changes for planetary WRF

Models are generally very Earth-specific!

- Remove 'hardwired' planet-specific constants instead use parameters which vary with planet
- Change 'Earth time' to 'general planet time'
- Allow orbital parameters to be specified
- Add physics parameterizations where needed

Results: for Earth (up to 3.)

- Solid-body rotation test (for a non-rotating planet!)
 including solid body rotation over the poles
- 2. Held-Suarez standard test of a dynamical core:
 Newtonian relaxation to typical tropospheric
 temperature profiles with Rayleigh friction (winds
 slowed towards zonal mean) increasing with height
- 3. Polvani-Kushner extension to Held-Suarez: added a simple stratosphere with cooling over winter pole
- 4. Further testing to look at wave propagation etc.

2. The Held-Suarez test:

a. Zonal mean T averaged over last 1000 days

2. The Held-Suarez test:

b. Zonal mean u averaged over last 1000 days

3. Polvani-Kushner - in initial stages (up to 380 days, but need average over *last 9000* days of *10000* day experiment)

Zonal mean u in global WRF at 380 days

Expected zonal mean u (average over last 9,000 days)

Results: for Mars (up to 3.)

- No CO₂ condensation, no atmospheric dust, no topography, diurnally-averaged heating
- 2. Added topography, diurnal cycle
- Mars with a realistic (but prescribed) atmospheric dust content and with a CO₂ cycle
- 4. Mars with interactive dust lifting and transport
- 5. High resolution nests over Hellas, Tharsis, etc.

Northern summer solstice: GFDL Mars GCM and WRF without dust 2D0 308 60S 30N 80N EQ 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

Northern summer solstice: Oxford Mars GCM and WRF without dust

Work completed and to be done

- Slightly ahead of schedule:
 - Completed planetary constants and clock changes
 - Nearly completed global conversion (some issues remaining with diffusion)
 - Beginning conversion to Mars and Titan

To be done:

- Demonstration of parallel capability
- Demonstration of nesting into global domain
- Completion of planetary conversion
- Development of polar-stereographic global model